SUPPORTING INFORMATION

Total Syntheses of the Telomerase-Inhibitors Dictyodendrin B, C and E

Alois Fürstner,* Mathias M. Domostoj, and Bodo Scheiper
Max-Planck-Institut für Kohlenforschung, D-45470 Mülheim/Ruhr, Germany
e-mail: fuerstner@mpi-muelheim.mpg.de

Complete Reference 48 (e): Mickel, S. J.; Sedelmeier, G. H.; Niederer, D.; Schuerch, F.; Seger, M.; Schreiner, K.; Daeffler, R.; Osmani, A.; Bixel, D.; Loiseleur, O.; Cercus, J.; Stettler, H.; Schaer, K.; Gamboni, R.; Bach, A.; Chen, G.-P.; Chen, W.; Geng, P.; Lee, G. T.; Loeser, E.; McKenna, J.; Kinder, F. R., Jr.; Konigsberger, K.; Prasad, K.; Ramsey, T. M.; Reel, N.; Repic, O.; Rogers, L.; Shieh, W.-C.; Wang, R.-M.; Waykole, L.; Xue, S.; Florence, G.; Paterson, I. Org. Process Res. Dev. 2004, 8, 113-121.

General: All reactions were carried out in flame-dried glassware under Ar. The solvents used were purified by distillation over the drying agents indicated and were transferred under Ar : THF, $\mathrm{Et}_{2} \mathrm{O}$, DME (Mg-anthracene), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, 1,2-dichloroethane ($\mathrm{P}_{4} \mathrm{O}_{10}$), MeCN, $\mathrm{Et}_{3} \mathrm{~N}\left(\mathrm{CaH}_{2}\right)$, $\mathrm{MeOH}(\mathrm{Mg})$, DMF (Desmodur®, dibutyltin dilaurate), hexane, toluene (Na / K). Flash chromatography: Merck silica gel 60 (230-400 mesh). IR: Nicolet FT-7199 spectrometer, wavenumbers (\tilde{v}) in cm^{-1}. MS (EI): Finnigan MAT $8200(70 \mathrm{eV})$, ESI-MS: Finnigan MAT 95, accurate mass determinations: Bruker APEX III FT-MS (7 T magnet). Melting points: Büchi melting point apparatus B-540 (corrected). Elemental analyses: H. Kolbe, Mülheim/Ruhr. All commercially available compounds (Fluka, Lancaster, Aldrich) were used as received unless otherwise stated.

NMR: Spectra were recorded on a Bruker DPX 300, AV 400, or DMX 600 spectrometer in the solvents indicated; chemical shifts (δ) are given in ppm relative to TMS, coupling constants (J) in Hz. The solvent signals were used as references and the chemical shifts converted to the TMS scale $\left(\mathrm{CDCl}_{3}: \delta_{\mathrm{C}} \equiv 77.0 \mathrm{ppm}\right.$; residual CHCl_{3} in $\mathrm{CDCl}_{3}: \delta_{\mathrm{H}} \equiv 7.26 \mathrm{ppm}$; $\mathrm{CD}_{2} \mathrm{Cl}_{2}: \delta_{\mathrm{C}} \equiv 53.8 \mathrm{ppm}$; residual $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}: \delta_{\mathrm{H}} \equiv 5.32 \mathrm{ppm}$; residual $\mathrm{CHD}_{2} \mathrm{OD}$ in $\left.\mathrm{CD}_{3} \mathrm{OD}: \delta_{\mathrm{H}} \equiv 3.31 \mathrm{ppm} ; \mathrm{CD}_{3} \mathrm{OD}: \delta_{\mathrm{C}} \equiv 49.0 \mathrm{ppm}\right)$. The coupling constants were not averaged. The proton spectra of the para-disubstituted phenyl groups are of AA'XX' spin systems. The
splitting of signals of greatest intensity is quoted as the value of the coupling constant ${ }^{3} J_{(A X)}$, assuming that ${ }^{5} J_{\left(A X^{\prime}\right)}$ is zero. Where indicated, the signal assignments are unambiguous; the numbering scheme is arbitrary and is shown in the inserts. The assignments are based upon 1D and 2D spectra recorded using the following pulse sequences from the Bruker standard pulse program library: DEPT; COSY (cosygs and cosydqtp); HSQC (invietgssi) optimized for ${ }^{1} J(\mathrm{C}, \mathrm{H})=145 \mathrm{~Hz}$; HMBC (inv4gslplrnd) for correlations via ${ }^{\mathrm{n}} J(\mathrm{C}, \mathrm{H})$; HSQC-TOCSY (invietgsml) using an MLEV17 mixing time of 120 ms .

Starting Materials

Scheme S-1. Conditions: [a] (i) NaH, DMF, 2h; (ii) dimethyl sulfate, DMF, 67\%; [b] NaOH, $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}(2: 1), 87 \%$; [c] oxalyl chloride, DMF cat., $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, quant.

Methyl 2-methoxy-3-(4-methoxyphenyl)-2-propenoate (S-2). ${ }^{1}$ To a suspension of NaH $(1.60 \mathrm{~g}, 66.6 \mathrm{mmol})$ in dry DMF $(15 \mathrm{~mL})$ was added a solution of 4-hydroxyphenylpyruvic acid $\mathbf{S}-\mathbf{1}(2.00 \mathrm{~g}, 11.1 \mathrm{mmol})$ in dry DMF $(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was allowed to warm to ambient temperature and was stirred for 2 h . Dimethyl sulfate (8.35 mL , 88.8 mmol) was then added and stirring continued for another 2 h . After completion of the reaction, water was introduced, the aqueous layer was extracted with EtOAc ($3 \times 20 \mathrm{~mL}$), the combined organic layers were washed with water and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Evaporation of the solvent followed by flash chromatography of the residue ($\mathrm{EtOAc} / \mathrm{hexanes}, 1: 4$) afforded the title compound S-2 as a pale yellow oil ($1.66 \mathrm{~g}, 67 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$: $\delta=7.72$ (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.75$ $(\mathrm{s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=165.2,160.6,144.3,132.1,126.5,124.0,114.3$, 59.3, 55.6, 52.2; IR (film): $\tilde{v}=3001,2952,2910,2841,1717,1634,1605,1571,1511,1437$, 1354, 1315, 1301, 1252, 1175, 1102, 1030, 834, 552, $521 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%): 222 (100 $[\mathrm{M}]^{+}$), 179 (52), 151 (53), 120 (18), 91 (14), 77 (16), 59 (9), 51 (11); HRMS (EI) calcd. for

[^0]$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{3}$: 222.0892; found: 222.0894. The stereochemical assignment of the configuration of the double bond is tentative.

2-Methoxy-3-(4-methoxyphenyl)-2-propenoic acid (S-3). A solution of compound S-2 (246 $\mathrm{mg}, 1.19 \mathrm{mmol})$ in $\mathrm{MeOH}(2.4 \mathrm{~mL})$ and aq. $\mathrm{NaOH}(2 \mathrm{M}, 1.2 \mathrm{~mL})$ was stirred at ambient temperature for 2 h . For work up, the solution was acidified with aq. $\mathrm{HCl}(1 \mathrm{~m})$ and the product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated, and the residue was dried under high vacuum for several hours to afford the title acid $\mathbf{S - 3}(216 \mathrm{mg}, 87 \%)$ as a white solid. $\mathrm{mp}=168-169{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta=7.70(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.02(\mathrm{~s}$, $3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=167.8,161.8,145.3,132.8$, 127.4, 125.2, 115.1, 59.3, 55.7; IR (film): $\tilde{v}=3000,2975,2938,2837,2515,1684,1603,1569$, 1509, 1443, 1425, 1249, 1175, 929, $822 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%): 208 (100 [M] ${ }^{+}$), 165 (36), 148 (18), 137 (20), 121 (14), 91 (11), 77 (18), 63 (6), 51 (11); HRMS (EI) calcd. for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{4}$: 208.0735; found: 208.0733. The stereochemical assignment of the configuration of the double bond is tentative.
1-(Bromoethyl)-4-methoxybenzene. ${ }^{2}$ A mixture of 2-(methoxyphenyl)ethanol ($18.2 \mathrm{~g}, 119$ $\mathrm{mmol})$ and $\mathrm{PBr}_{3}(3.74 \mathrm{~mL}, 39.8 \mathrm{mmol})$ in toluene was refluxed for 2 h before it was allowed to reach ambient temperature. The organic phase was washed with sat. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} / \mathrm{NaHCO}_{3}$ (1:1, $3 \times 20 \mathrm{~mL}$) and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ before the solvent was evaporated to give the title bromide as a colorless liquid ($24.3 \mathrm{~g}, 95 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.11(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.51(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.08(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=158.5,130.9,129.6,113.9,55.2,38.5,33.3$; IR (film): $\tilde{v}=3031,3002,2957,2935,2908,2834,1611,1584,1513,1464,1441,1302$, 1247, 1179, 1035, $821 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%): 216 (16), 214 (17[M] ${ }^{+}$), 135 (19), 121 (100), 91 (7), 77 (6), 65 (4), 51 (3), 39 (3).
2,2,2-Trichloroethyl chlorosulfate. ${ }^{3} \mathrm{SO}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL}, 62 \mathrm{mmol})$ was added dropwise to a stirred solution of 2,2,2-trichloroethanol ($6.0 \mathrm{~mL}, 62 \mathrm{mmol}$) and pyridine ($5.0 \mathrm{~mL}, 62 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}(120 \mathrm{~mL})$ at $-20^{\circ} \mathrm{C}$. Once the addition was complete, the mixture was warmed to ambient temperature, and stirring was continued for 1 h . For work up, the reaction was carefully quenched with water (20 mL), the layers were separated, and the organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. The crude product was purified by distillation, yielding the title compound as a colorless oil ($10.6 \mathrm{~g}, 69 \%$, $\left.\mathrm{bp}=38^{\circ} \mathrm{C} / 0.04 \mathrm{mbar}\right) .{ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta=4.92(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 91.3, 81.2; IR (film): $\tilde{v} 3021,2963$, 1420, 1376, 1193, 1088, 1045, 993, 875, 780, 729, $597 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%): 213 (35), 129 (100), 119 (43), 117 (44), 99 (23), 77 (12), 61 (12), 49 (14), 29 (12).

[^1]
Preparation of the Common Synthesis Platform 18

3-Hydroxy-2-nitrophenylethanone (10). ${ }^{4}$ 3-Hydroxyacetophenone ($10.0 \mathrm{~g}, 73.4 \mathrm{mmol}$) was dissolved in ice-cold concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}(30 \mathrm{~mL})$. The resulting solution was cooled to -20 ${ }^{\circ} \mathrm{C}$ before a mixture of concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}(4 \mathrm{~mL})$ and $\mathrm{HNO}_{3}(5 \mathrm{~mL})$ was slowly added over 15 min . Once the addition was complete, the mixture was stirred for another 10 min before it was carefully poured on ice. After stirring for 30 min , the yellow precipitate was filtered off and recrystallized twice from ethanol to yield compound $\mathbf{1 0}$ as a beige solid ($3.81 \mathrm{~g}, 29 \%$) mp $=134-135{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=10.5(\mathrm{~s}, 1 \mathrm{H}), 7.60(\mathrm{dd}, J=8.5,7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.22(\mathrm{dd}, J=8.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{dd}, J=7.4,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=199.4,155.1,140.6,137.0,121.1,118.1,30.3$; IR (film): $\widetilde{v}=3093,1666$, 1582, 1530, 1472, 1376, 1290, $798 \mathrm{~cm}^{-1}$; MS (EI): $m / z(\%): 181$ (48 [M] $]^{+}$), 166 (100), 139 (13), 92 (36), 77 (8), 66 (24), 43 (97), 39 (35).

3-Isopropoxy-2-nitrophenylethanone (11). A suspension of ketone $\mathbf{1 0}$ ($1.00 \mathrm{~g}, 5.52 \mathrm{mmol}$), isopropyl bromide ($0.64 \mathrm{~mL}, 6.79 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(2.67 \mathrm{~g}, 19 \mathrm{mmol})$ in DMF $(12 \mathrm{~mL})$ was stirred at $100{ }^{\circ} \mathrm{C}$ for 3 h . For work up, water (80 mL) was added, the aqueous layer was extracted with tert-butyl methyl ether ($3 \times 20 \mathrm{~mL}$), the combined organic layers were washed with water ($5 \times 20 \mathrm{~mL}$) and aq. $\mathrm{NaOH}(2 \mathrm{M}, 20 \mathrm{~mL})$ before they were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated, thus affording the title compound $\mathbf{1 1}$ as brown syrup which solidified upon standing at ambient temperature ($1.22 \mathrm{~g}, 99 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.49(\mathrm{~m}, 1$ H), $7.35(\mathrm{~m}, 1 \mathrm{H}), 7.24(\mathrm{~m}, 1 \mathrm{H}), 4.65$ (hept, $J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~d}, J=$ $6.1 \mathrm{~Hz}, 6 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=195.5,150.0,131.5,130.8,120.7,119.4,73.2$, 27.9, 21.7; IR (film): $\tilde{v}=3090,2982,2935,1697,1579,1544,1446,1375,1286,1106,949$, 851, $790 \mathrm{~cm}^{-1}$; MS (EI): m / z (\%): 223 ($\left.8[\mathrm{M}]^{+}\right), 181$ (30), 166 (100), 139 (9), 92 (8), 77 (3), 66 (8), 51 (3), 43 (63), 39 (11); HRMS (EI) calcd. for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}_{4}: 223.0844$; found: 223.0846.
(2E)-3-Isopropoxy-2-nitrophenyl-3-(4-methoxyphenyl)-2-propenone (12). Sodium (294 $\mathrm{mg}, 12.8 \mathrm{mmol})$ was dissolved in $\mathrm{MeOH}(10 \mathrm{~mL})$ before a solution of p methoxybenzaldehyde ($6.20 \mathrm{~mL}, 51.1 \mathrm{mmol}$) and ketone $11(5.70 \mathrm{~g}, 25.6 \mathrm{mmol})$ in MeOH $(10 \mathrm{~mL})$ was added. The mixture was stirred at $70{ }^{\circ} \mathrm{C}$ for 2 h before it was slowly cooled to ambient temperature. The resulting precipitate was filtered off, washed successively with water (20 mL) and $\mathrm{MeOH}(20 \mathrm{~mL})$, and dried under high vacuum to give chalcone $\mathbf{1 2}$ as a white solid ($6.44 \mathrm{~g}, 74 \%$). $\mathrm{mp}=111-112{ }^{\circ} \mathrm{C}(\mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.57$ (d, $J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.47(\mathrm{~m}, 3 \mathrm{H}), 7.26-7.20(\mathrm{~m}, 2 \mathrm{H}), 6.99(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.91$ (m, 2 H), 4.67 (hept, $J=6.1 \mathrm{~Hz}, 1 \mathrm{H}$), $3.85(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR

[^2]($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=189.6,162.2,150.1,147.0,134.3,131.1,130.6,126.9,121.4,120.2$, 118.1, 114.5, 73.1, 55.4, 21.8; IR (film): $\tilde{v}=2980,2935,2839,1664,1642,1589,1572$, 1541, 1512, 1466, 1444, 1424, 1374, 1259, 1174, 1029, 977, 830, $799 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%): 341 (14[M] $]^{+}$), 188 (23), 176 (8), 163 (55), 149 (38), 135 (38), 121 (100), 107 (17), 90 (9), 77 (11), 63 (3), 43 (18). HRMS (EI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{5}+\mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 364.1160$; found: 364.1157.

(3-Isopropoxy-2-nitrophenyl)\{4-(4-methoxyphenyl)-1-[2-(4-methoxyphenyl)ethyl]1H-

 pyrrol-3-yl\}methanone (13). To a stirred suspension of $\mathrm{NaH}(2.11 \mathrm{~g}, 87.9 \mathrm{mmol})$ in dry THF $(60 \mathrm{~mL})$ was added a solution of TosMIC $(5.70 \mathrm{~g}, 29.3 \mathrm{mmol})$ and chalcone $\mathbf{1 2}(5.00 \mathrm{~g}, 14.7$ $\mathrm{mmol})$ in THF $(40 \mathrm{~mL})$ at $-30^{\circ} \mathrm{C}$. The mixture was stirred at $-30^{\circ} \mathrm{C}$ for 1 h and at ambient temperature for 2 h . After completion of the reaction, 2-bromoethyl-4-methoxybenzene (15.8 $\mathrm{g}, 73.3 \mathrm{mmol}$) was introduced and the solution was refluxed for 2 h . For work up, the reaction was quenched with water (20 mL) and the product was extracted with EtOAc ($3 \times 20 \mathrm{~mL}$). The combined organic layers were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent followed by flash chromatography of the residue (EtOAc/hexanes, 1:3) afforded pyrrole 13 as a pale yellow foam ($6.27 \mathrm{~g}, 83 \%$). $\mathrm{mp}=68-69{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.33(\mathrm{~m}, 2 \mathrm{H}), 7.25(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~m}, 1 \mathrm{H}), 6.97(\mathrm{~m}, 2 \mathrm{H}), 6.88(\mathrm{dd}, J=1.0$, $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.84-6.78(\mathrm{~m}, 5 \mathrm{H}), 6.56(\mathrm{~m}, 1 \mathrm{H}), 4.61(\mathrm{hep}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{t}, J=$ $7.0 \mathrm{~Hz}, 2 \mathrm{H}$), 3.78 (s, 3 H), 3.77 (s, 3 H), 2.98 (t, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$), 1.34 (d, $J=6.1 \mathrm{~Hz}, 6 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=186.4,158.6,158.4,149.7,141.0,136.1,130.7,130.5$, $129.9,129.7,129.5,127.1,126.7,121.5,121.2,120.7,117.3,114.1,113.3,73.0,55.2,55.2$, $52.0,36.8,21.8$; IR (film): $\tilde{v}=3124,2979,2935,2836,1643,1611,1537,1514,1465,1443$, 1383, 1288, 1247, 1179, 1034, $833 \mathrm{~cm}^{-1}$; MS (EI): $m / z(\%): 514$ (100 [M] ${ }^{+}$), 322 (23), 160 (10), 135 (48), 121 (41), 105 (9), 77 (4), 43 (6); HRMS (EI) calcd. for $\mathrm{C}_{30} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{6+} \mathrm{Na}$ ($[\mathrm{M}+\mathrm{Na}]^{+}$): 537.2001; found: 537.1997.(2-Amino-3-isopropoxyphenyl)\{4-(4-methoxyphenyl)-1-[2-(4-methoxyphenyl)ethyl]1H-pyrrol-3-yl\}methanone (14). Aq. $\mathrm{HCl}(0.6 \mathrm{M}, 21 \mathrm{~mL}, 12.5 \mathrm{mmol})$ was added to a suspension of compound $\mathbf{1 3}(4.67 \mathrm{~g}, 9.08 \mathrm{mmol})$ and iron powder ($5.07 \mathrm{~g}, 90.8 \mathrm{mmol}$) in EtOH (90 mL) and the resulting suspension was refluxed for 2 h with vigorous stirring. The mixture was cooled to ambient temperature and filtered through a pad of Celite, the filtrate was diluted with $\mathrm{EtOAc}(200 \mathrm{~mL})$ and successively washed with sat. aq. $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$ and brine (30 mL). Drying of the organic layer over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ followed by evaporation of the solvent gave aniline 14 as a yellow foam ($4.24 \mathrm{~g}, 96 \%$). $\mathrm{mp}=54-55{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $7.29(\mathrm{~m}, 2 \mathrm{H}), 7.13(\mathrm{dd}, J=1.2,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~m}, 2 \mathrm{H}), 6.86-6.81(\mathrm{~m}, 5 \mathrm{H}), 6.72(\mathrm{~d}$, $J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.43(\mathrm{~m}, 1 \mathrm{H}), 6.02(\mathrm{~s}, 2 \mathrm{H}), 4.51(\mathrm{hept}, J=6.1 \mathrm{~Hz}$, $1 \mathrm{H}), 4.03(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.98(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.35(\mathrm{~d}$, $J=6.1 \mathrm{~Hz}, 6 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=193.3,158.5,158.0,144.9,141.7$, 129.7, $129.6,129.2,128.4,127.5,126.7,125.3,122.0,120.8,120.0,115.5,114.0,113.6,113.5,70.9$, 55.2, 55.1, 51.7, 37.0, 22.1; IR (film): $\tilde{v}=3488,3358,3119,3034,2975,2933,2834,1612$,

1541, 1513, 1454, 1385, 1246, 1220, 1036, $833 \mathrm{~cm}^{-1}$; MS (EI): $m / z(\%): 484$ (69 [M] ${ }^{+}$), 441 (10), 363 (100), 321 (42), 186 (15), 135 (23); HRMS (EI) calcd. for $\mathrm{C}_{30} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})$: 485.2440; found: 485.2441 .

Table S-1. Tabular survey of the NMR data of amine $\mathbf{1 4}$ recorded in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$. All assignments are unambiguous, cf. General; arbitrary numbering scheme as indicated in the insert.

position	δ_{c} [ppm] (150 MHz)	$\delta^{H}[\mathrm{ppm}](600 \mathrm{MHz})$
1	120.5	6.68 (d, $J=2.3 \mathrm{~Hz}, 1 \mathrm{H})$
2	126.7	
3	122.4	
4	128.6	6.72 (d, $J=2.3 \mathrm{~Hz}, 1 \mathrm{H})$
5	52.1	4.08 (t, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$
6	37.3	3.02 (t, J=7.0 Hz, 2H)
7	130.4	
8	130.1	7.04 (m, 2H)
9	114.4	6.86 (m, 2H)
10	159.0	
11	55.5	3.794 (s, 3H)
12	128.2	
13	129.6	7.27 (m, 2H)
14	113.7	6.83 (m, 2H)
15	158.5	
16	55.5	3.792 (s, 3H)
17	193.5	
18	121.2	
19	142.1	
20	145.4	
21	116.0	6.87 (m, 1H)
22	114.0	6.46 (m, 1H)
23	125.7	$\begin{gathered} 7.13(\mathrm{dd}, J=1.2,8.1 \mathrm{~Hz}, \\ 1 \mathrm{H}) \end{gathered}$
24	71.5	4.55 ($\mathrm{sep}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H})$
25	22.3	1.36 (d, J = 6.1 Hz, 6H)
NH_{2}		6.01 (s, 2H),

2- N -[2-Isopropoxy-6-(\{4-(4-methoxyphenyl)-1-[2-(4-methoxyphenyl)ethyl]-1H-pyrrol-3-yl\}carbonyl)phenyl]-2-methoxy-3-(4-methoxyphenyl)-2-propenamide (16). Freshly distilled oxalyl chloride ($0.70 \mathrm{~mL}, 8.26 \mathrm{mmol}$) was added dropwise to a suspension of acid $\mathbf{S}-\mathbf{3}(1.29 \mathrm{~g}, 6.19 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under argon, followed by 4 drops of dry DMF. After 5 min , the cooling bath was removed and the mixture was stirred at ambient temperature for 1 h . The solvent was evaporated and the residue was dried in vacuo.

The crude acid chloride $\mathbf{1 5}$ thus formed was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and the resulting solution was added dropwise to a stirred solution containing aniline $14(2.00 \mathrm{~g}, 4.13 \mathrm{mmol})$, freshly distilled $\mathrm{Et}_{3} \mathrm{~N}(2.90 \mathrm{~mL}, 20.7 \mathrm{mmol})$ and DMAP ($50 \mathrm{mg}, 0.619 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (20 mL) at ambient temperature. The mixture was stirred for 30 min before it was quenched with sat. aq. $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$. The layers were separated, the organic phase was washed successively with aq. $\mathrm{HCl}(3 \mathrm{M}, 10 \mathrm{~mL})$, sat. aq. $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and brine $(5 \mathrm{~mL})$ before it was dried over MgSO_{4}. Evaporation of the solvent followed by flash chromatography of the residue (EtOAc/hexanes, $3: 7 \rightarrow 1: 1$) afforded amide $\mathbf{1 6}$ as a yellow foam $(2.49 \mathrm{~g}, 89 \%) . \mathrm{mp}=$ $69-70{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.61(\mathrm{~s}, 1 \mathrm{H}), 7.61(\mathrm{~m}, 2 \mathrm{H}), 7.37(\mathrm{~m}, 2 \mathrm{H}), 7.08$ $(\mathrm{m}, 1 \mathrm{H}), 7.00-6.94(\mathrm{~m}, 6 \mathrm{H}), 6.88-6.78(\mathrm{~m}, 6 \mathrm{H}), 6.54(\mathrm{~m}, 1 \mathrm{H}), 4.55$ (hept, $J=6.1 \mathrm{~Hz}, 1 \mathrm{H})$, $4.00(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 6 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 2.98(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, 1.34 (d, $J=6.1 \mathrm{~Hz}, 6 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=190.0,162.1,159.7,158.5,158.1$, $151.4,147.4,137.6,131.4,131.0,129.8,129.7,127.4,126.8,126.2,125.3,124.5,121.8$, $121.3,120.8,120.2,115.2,114.0,114.0,113.2,71.1,59.2,55.2,51.8,36.9,22.1$; IR (KBr): $\tilde{v}=3406,3122,2974,2935,2836,1683,1638,1604,1512,1465,1442,1247,1147,1032$, 851, 833, $785 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%): 674 (51 [M] ${ }^{+}$), 630 (8), 469 (12), 334 (40), 308 (16), 162 (17), 148 (100), 121 (22), 120 (18), 105 (8); HRMS (EI) calcd. for $\mathrm{C}_{41} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{7}+\mathrm{Na}$ $\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 697.2889 ;$ found: 697.2886.

7-Isopropoxy-2-[methoxy-2-(4-methoxyphenyl)ethenyl]-3-\{4-(4-methoxyphenyl)-1-[2-(4-methoxyphenyl)ethyl]-1H-pyrrol-3-yl\}-1H-indole (17). CAUTION: $C_{8} \mathrm{~K}$ is pyrophoric and must be handled under Ar with care! Dry DME (40 mL) was carefully added (exothermic!) to a mixture of $\mathrm{TiCl}_{3}(2.85 \mathrm{~g}, 18.5 \mathrm{mmol})$ and $\mathrm{C}_{8} \mathrm{~K}(4.96 \mathrm{~g}, 36.7 \mathrm{mmol})^{5}$ at $0{ }^{\circ} \mathrm{C}$ under argon and the resulting suspension was refluxed for 1.5 h . Dry pyridine (1.5 mL , 18.5 mmol) was introduced and reflux was continued for another 15 min . A solution of ketoamide $16(2.49 \mathrm{~g}$, $3.69 \mathrm{mmol})$ in dry DME (10 mL) was then introduced and the mixture was refluxed until TLC indicated complete conversion of the substrate (ca. 1.5 h). After reaching ambient temperature, the mixture was filtered through a plug of Celite layered on silica, which was carefully rinsed with $\mathrm{EtOAc} / \mathrm{PhMe}(1: 1,150 \mathrm{~mL})$, and the combined filtrates were

[^3]concentrated in vacuo. Purification of the residue by flash chromatography (EtOAc/hexanes, $1: 6+1 \% 6 \mathrm{M} \mathrm{NH}_{3} / \mathrm{MeOH}$) yielded indole 17 as a yellow oil ($1.68 \mathrm{~g}, 71 \%$). The yield was raised to 93% when this reaction was performed on a somewhat smaller scale (278 mg of ketoamide 16). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=8.55(\mathrm{~s}, 1 \mathrm{H}), 7.35(\mathrm{~m}, 2 \mathrm{H}), 7.08-7.02(\mathrm{~m}, 4$ H), 6.97-6.90 (m, 2 H), 6.82-6.76 (m, 5 H), 6.67-6.57 (m, 4 H$), 5.93(\mathrm{~m}, 1 \mathrm{H}), 4.75(\mathrm{hep}, J=$ $6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H})$, $3.08(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.44(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=158.8$, $158.6,157.9,147.3,144.4,132.1,131.1,130.9,130.2,130.1,129.8,128.8,128.3,126.9$, 124.6, 121.9, 120.4, 118.9, 114.5, 114.2, 113.9, 113.7, 112.7, 105.0, 70.8, 58.5, 55.5, 55.4, 52.0, 37.7, 22.5; IR (KBr): $\tilde{v}=3480,3429,2974,2933,2834,1609,1575,1547,1511,1463$, 1454, 1441, 1248, 1177, 1034, 832, $784 \mathrm{~cm}^{-1}$; MS (EI): $m / z(\%): 642\left(44[\mathrm{M}]^{+}\right), 627$ (100), 135 (36), 121 (11), 43 (2). HRMS (EI) calcd. for $\mathrm{C}_{41} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{5}+\mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 665.2991$; found: 665.2987.

7-Isopropoxy-5-methoxy-1,4-bis-(4-methoxy-phenyl)-3-[2-(4-methoxy-phenyl)-ethyl]-3,6-dihydro-pyrrolo $[2,3-c]$ carbazole (18). In a water-cooled photoreactor, a solution of indole $17(450 \mathrm{mg}, 0.70 \mathrm{mmol})$ and nitrobenzene $(1 \mathrm{~mL})$ in $\mathrm{MeCN}(140 \mathrm{~mL})$ was purged with argon for 30 min . After that time, $\mathrm{Pd} / \mathrm{C}(10 \% \mathrm{w} / \mathrm{w}, 370 \mathrm{mg}, 0.350 \mathrm{mmol})$ was added and the resulting suspension was irradiated with a medium pressure Hg-lamp (Hanovia, 250 W) (cooled by a stream of cold water) for 2.5 h . After completion of the reaction, the suspension was filtered through a silica/Celite pad, which was carefully rinsed with EtOAc/PhMe (1:1, 100 mL). The filtrate was evaporated and the residue was purified by flash chromatography (EtOAc/hexanes, 1:6) to afford pyrrolocarbazole 18 as a yellow solid ($365 \mathrm{mg}, 81 \%$) $\mathrm{mp}=$ $173-174{ }^{\circ} \mathrm{C}$; ${ }^{\mathrm{H}} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta=8.54(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.41$ (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.09 (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.01 (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.90$ (s, 1 H$), 6.79$ (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{dd}, J=8.0,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.66(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $2 \mathrm{H}), 6.23(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.76$ (hept, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.93 ($\mathrm{s}, 3 \mathrm{H}$), 3.92 ($\mathrm{s}, 3 \mathrm{H}$), 3.84 $(\mathrm{m}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 2.63(\mathrm{~m}, 2 \mathrm{H}), 1.45(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta=159.6,159.1,158.4,143.7,140.6,132.4,132.0,130.7,130.6,130.3,129.8$, 129.1, 128.9, 127.8, 124.9, 119.4, 118.7, 118.1, 117.1, 117.0, 115.2, 113.8, 113.7, 113.4, 106.9, 70.9, 61.4, 55.5, 55.3, 50.2, 37.0, 22.2; IR (film) $\tilde{v}=3328,2935,2831,1614,1572$, $1544,1513,1455,1436,1404,1369,1340,1304,1276,1236,1174,1135,1117,1038,1024$, 1004, 931, 913, 874, 859, 834, 819, 783, 770, 734, $678 \mathrm{~cm}^{-1} . \mathrm{MS}$ (EI): $\mathrm{m} / \mathrm{z}(\%): 484$ (69 $\left.\left[\mathrm{M}^{+}\right]\right), 441$ (10), 363 (100), 321 (42), 186 (15), 135 (23).

Total Synthesis of Dictyodendrin C

7-Hydroxy-1,4-bis(4-hydroxyphenyl)-3-[2-(4-hydroxyphenyl)ethyl]pyrrolo[2,3-c]-carbazol-2,5(3H,6H)-dione (8). A solution of $\mathrm{BBr}_{3}\left(1 \mathrm{M}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.31 \mathrm{~mL}, 0.31 \mathrm{mmol}\right)$ was added to a solution of compound $\mathbf{1 8}(20 \mathrm{mg}, 0.031 \mathrm{mmol})$ and cyclohexene $(0.063 \mathrm{~mL}$, $0.620 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ and the resulting mixture was allowed to reach ambient temperature over the course of 8 h . The reaction was quenched with aq. $\mathrm{KHSO}_{4}(10 \%$ $w / w, 2 \mathrm{~mL})$ and $\mathrm{NaOH}(20 \% w / w, 1 \mathrm{~mL})$ and the organic phase was washed with water. The aqueous phase was acidified with conc. $\mathrm{HCl}(2 \mathrm{~mL})$ and extracted with tert-butyl methyl ether, the combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. Purification of the residue by preparative reverse-phase HPLC (Nucleodur 100-$\left.16-\mathrm{C}-18 / \mathrm{A}, \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}\right)$ afforded compound $\mathbf{8}$ as a green-brown solid ($8.5 \mathrm{mg}, 49 \%$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{d}_{6}$-acetone): $\delta=7.40(\mathrm{~m}, 2 \mathrm{H}), 7.32(\mathrm{~m}, 2 \mathrm{H}), 6.98(\mathrm{~m}, 2 \mathrm{H}), 6.96(\mathrm{~m}, 2 \mathrm{H})$, $6.68(\mathrm{~m}, 2 \mathrm{H}), 6.66(\mathrm{dd}, J=7.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~m}, 2 \mathrm{H}), 5.95$ (dd, $J=7.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{~m}, 2 \mathrm{H}), 2.43(\mathrm{~m}, 2 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{d}_{6}$-acetone): $\delta=$ $179.4,171.8,159.5,158.5,156.7,149.6,145.5,134.8,133.7,133.3,133.1,130.6,129.8$, $129.8,129.3,126.2,124.4,123.9,122.8,118.1,116.2,115.9,115.8,115.6,113.4,110.2,43.7$, 34.6. IR (film): $\tilde{v}=3312,2925,1687,1582,1511,1436,1392,1357,1217,1168,1106$, 1080, 827, $780 \mathrm{~cm}^{-1}$. MS (EI): $m / z(\%): 557$ ([M+H]). HRMS (EI) calcd. for $\mathrm{C}_{34} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{6}+\mathrm{Na}$ ([M+Na] ${ }^{+}$): 579.15321; found: 579.15271.

Phenol 19. $\mathrm{BCl}_{3}(1 \mathrm{~m}$ solution in heptanes, $0.970 \mathrm{~mL}, 0.970 \mathrm{mmol})$ was added dropwise to a stirred solution of compound $\mathbf{1 8}(155 \mathrm{mg}, 0.242 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0{ }^{\circ} \mathrm{C}$ under argon. After 1 h , the reaction mixture was quenched with sat. aq. $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$, and vigorously stirred at RT for 30 min . The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$, the organic layers were washed with brine (2 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated. The residual solid was purified by recrystallisation in hot EtOAc/hexanes to afford the title compound 19 (109 $\mathrm{mg}, 75 \%)$ as a white solid. $\mathrm{mp}=253-255{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, acetone $\left.-\mathrm{d}_{6}\right): \delta=9.87(\mathrm{~s}, 1$ H), $8.35(\mathrm{~s}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$, $7.06(\mathrm{~s}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.76-6.73(\mathrm{~m}, 4 \mathrm{H}), 6.70(\mathrm{dd}, J=7.2,0.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.56(\mathrm{dd}, J=8.8,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~m}$, $2 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 2.64(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{THF}-\mathrm{d}_{8}$): $\delta=160.4$, $159.8,159.4,143.6,141.7,133.3,132.6,131.6,131.5,130.4,130.4,129.8,129.5,129.2$, $126.3,120.4,118.8,118.4,118.0,117.2,116.5,114.2,113.8,108.8,108.4,68.2,61.1,55.5$, $55.5,55.3,50.9,37.8$; IR (film) $\tilde{v}=3437,2926,2838,1733,1606,1576,1548,1513,1462$, 1440, 1403, 1347, 1301, 1282, 1243, 1229, 1174, 1162, 1135, 1106, 1091, 1063, 1033, 999, 935, 913, 850, 840, 784, 772, 731, 709, $682 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%): 599 (42), 598 (100 $\left[\mathrm{M}^{+}\right]$), 477 (25), 462 (16), 461 (11), 447 (12), 446 (33), 445 (11), 135 (21); HRMS (ESI $)$ calcd. for $\mathrm{C}_{38} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{5}+\mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 621.2360; found: 621.2357.

Sulfate ester 20. A solution of 2,2,2-trichloroethyl chlorosulfate ($66.5 \mathrm{mg}, 0.270 \mathrm{mmol}$) in THF (1 mL) was added dropwise to a solution of phenol $19(108 \mathrm{mg}, 0.180 \mathrm{mmol})$ and DABCO ($60.6 \mathrm{mg}, 0.540 \mathrm{mmol}$) in THF (18 mL). After stirring for 3 days, the reaction was quenched with sat. aq. $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and brine $(5 \mathrm{~mL})$. The product was extracted with EtOAc ($3 \times 10 \mathrm{~mL}$), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated. The residue was purified by flash chromatography (EtOAc/hexanes, 3:7) to afford product $\mathbf{2 0}$ ($104 \mathrm{mg}, 71 \%$) as a colorless oil. Remaining starting material ($30 \mathrm{mg}, 28 \%$) could be re-isolated by a further elution of the silica gel column with EtOAc. Spectroscopic data for 20: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=$ 8.79 (s, 1 H), 7.52 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.41 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.33 (dd, $J=8.0,0.4 \mathrm{~Hz}, 1$ H), 7.10 (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.03 (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$), $6.94(\mathrm{~s}, 1 \mathrm{H}), 6.86(\mathrm{dd}, J=8.0,8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.71$ (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.65(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.62(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{~s}, 2$ H), $3.93(\mathrm{~s}, 3 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~m}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 2.63(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=159.7$, 159.2, 158.4, 140.3, 134.8, 132.3, 132.0, 130.7, 130.4, 130.0, 129.9, 129.7, 129.5, 127.7, 127.2, 124.3, 119.5, 119.3, 118.6, 116.9, 115.7, 114.5, $113.8,113.7,113.5,95.8,92.5,81.0,61.5,55.5,55.5,55.2,50.2,37.0$; IR (film) $\tilde{v}=3414$, 2933, 2835, 1609, 1570, 1548, 1512, 1461, 1441, 1404, 1357, 1304, 1285, 1241, 1192, 1159, 1104, 1085, 1029, 1006, 988, 932, 886, 860, 836, 810, 793, 784, $722 \mathrm{~cm}^{-1}$; HRMS (ESI ${ }^{+}$) calcd. for $\mathrm{C}_{40} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{SCl}_{3}+\mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): ~ 831.1072$; found: 831.1073.

Compound 21. BCl_{3} (1 m solution in heptanes) was added dropwise to a solution of the polyphenol $20(96.2 \mathrm{mg}, 0.119 \mathrm{mmol})$ and $n-\mathrm{Bu}_{4} \mathrm{NI}(351 \mathrm{mg}, 0.950 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. After 30 min , the reaction mixture was quenched with sat. aq. $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$, diluted with EtOAc (20 mL), and vigorously stirred for 30 min . The layers were separated, the organic phase was washed with brine (2 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated to give a yellow oil which was used directly in the next step without further purification.

To a solution of this crude polyphenol in $\mathrm{CH}_{3} \mathrm{CN}(12 \mathrm{~mL})$ was added $\mathrm{H}_{2} \mathrm{O}_{2}(30 \% w / w$ solution in $\mathrm{H}_{2} \mathrm{O}, 0.400 \mathrm{~mL}$). After 1 h , the solvent was evaporated and the residue was purified by reverse-phase chromatography (Merck LiChroprep RP-18, eluent $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O} 4: 1$) to afford quinone 21 ($51.9 \mathrm{mg}, 57 \%$ over 2 steps) as a brown syrup. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta=$ 7.35 (dd, $J=7.9,0.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.32 (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.24 (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.93$ (d, $J=$ $8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.91(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{dd}, J=8.2,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2$ H), $6.57(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.37(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~s}, 2 \mathrm{H}), 3.44(\mathrm{~m}, 2 \mathrm{H}), 2.39(\mathrm{~m}, 2$ $\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=180.6,173.0,161.0,159.4,156.9,150.3,137.9,134.8$, $134.4,133.9,133.5,131.9,131.3,130.9,130.0,127.7,124.9,123.9,123.3,122.0,119.5$, $118.2,116.7,116.2,116.0,114.3,94.0,81.9,44.2,34.9$; IR (film) $\tilde{v}=3263,2926,2851$, $1694,1599,1511,1476,1437,1395,1319,1202,1163,1107,1086,987,895,821,796,721$ cm^{-1}; HRMS (ESI') calcd. for $\mathrm{C}_{36} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{SCl}_{3}+\mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 789.0239; found: 789.0246.

Dictyodendrin C (3). Zn powder (pre-activated with $\mathrm{HCl}, 9.3 \mathrm{mg}, 0.143 \mathrm{mmol}$) was added to a solution of sulfate ester $21(21.9 \mathrm{mg}, 0.0285 \mathrm{mmol})$ and $\mathrm{HCO}_{2} \mathrm{NH}_{4}(26.9 \mathrm{mg}, 0.428 \mathrm{mmol})$
in $\mathrm{MeOH}(2.9 \mathrm{~mL})$ at ambient temperature. After the resulting mixture had been vigorously stirred for 30 min ., the suspension was filtered through a pad of Celite and the filtrate was stirred for 4 h under an atmosphere of oxygen (1 atm). The solvent was evaporated and the residue was purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 85 / 15\right)$. The fraction containing the product were combined and the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was carefully evaporated. Excess aq. $\mathrm{NH}_{4} \mathrm{OH}$ (5 drops) was then added and the mixture was concentrated to dryness to afford the ammonium salt of dictyodendrin C $\mathbf{3}(14.2 \mathrm{mg}, 76 \%)$ as a golden solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=$ $7.32(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 2 \mathrm{H}), 6.90(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.72(\mathrm{dd}, J=8.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $6.57(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.15(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{~m}, 2 \mathrm{H}), 2.40(\mathrm{~m}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=180.8,173.3,160.3,159.2,156.9,150.4,140.7,135.3,134.0,133.8$, 133.6, 133.4, 131.0, 130.8, 130.5, 130.1, 126.8, 124.1, 123.8, 122.4, 122.0, 118.2, 116.4, 116.1, 116.0, 114.0, 44.2, 34.9; IR (film) $\tilde{v}=3262,2927,1693,1599,1510,1475,1437$, 1392, 1356, 1222, 1167, 1110, 1054, 1023, 917, 890, 809, 790, 777, 741, $721 \mathrm{~cm}^{-1}$; HRMS (ESI^{-}) calcd. for $\mathrm{C}_{34} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{~S}\left(\left[\mathrm{M}-\mathrm{NH}_{4}\right]^{-}\right)$: 635.1119; found: 635.1102.

Total Synthesis of Dictyodendrin B

3 $\rightarrow 2$ Aryl Migration: Preparation of 7-methoxy-2,4-bis(4-methoxyphenyl)-3-[2-(4-methoxy-phenyl)ethyl]-3,6-dihydropyrrolo[2,3-c]carbazole (24). A solution of substrate 23 ($11 \mathrm{mg}, 0.02 \mathrm{mmol}$), p-methoxybenzoxyl chloride ($3 \mathrm{mg}, 0.02 \mathrm{mmol}$) and $\mathrm{SnCl}_{4}(0.002 \mathrm{~mL}$, 0.021 mmol) in 1,2 -dichloroethane (1.5 mL) was stirred at $80^{\circ} \mathrm{C}$ for 2 h . The reaction was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ before it was quenched at ambient temperature with sat. aq. $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$. A standard extractive work up followed by flash chromatography (EtOAc/hexanes, 1:4) of the crude material afforded compound 24 as a colorless solid (7 mg , $64 \%) .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{d}_{6}$-acetone): $\delta=10.28(\mathrm{~s}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~m}$, $2 \mathrm{H}), 7.48(\mathrm{~m}, 2 \mathrm{H}), 7.29(\mathrm{~s}, 1 \mathrm{H}), 7.15(\mathrm{~m}, 1 \mathrm{H}), 7.14(\mathrm{~m}, 1 \mathrm{H}), 7.11(\mathrm{~m} 2 \mathrm{H}), 7.06(\mathrm{~m}, 2 \mathrm{H}), 6.94$ $(\mathrm{d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{~m}, 2 \mathrm{H}), 6.29(\mathrm{~m}, 2 \mathrm{H}), 4.02(\mathrm{~m}, 5 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.66$ (s, 3H), 2.19 (m, 2H). ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{d}_{6}$-acetone): see Table S-2. IR (Film): $\tilde{v}=2950$, 2925, 2899, 2832, 1609, 1577, 1512, 1457, 1439, 1421, 1281, 1244, 1175, 1083, 1030, 834, 793, 753, $734 \mathrm{~cm}^{-1} . \mathrm{MS}$ (EI): $m / z(\%): 582$ (96 [M $\left.\left.{ }^{+}\right]\right), 461$ (100), 430 (22), 121 (6). HR-MS (EI) calcd for $\mathrm{C}_{38} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 583.2596 ; found: 583.2591 .

Table S-2. Tabular survey of the NMR data of compound 24 recorded in acetone- d_{6}. All assignments are unambiguous, cf. General; arbitrary numbering scheme as indicated in the insert.

position	ठС [ppm]	ठH [ppm]
1	144.2	
2	102.7	7.14 (m, 1H)
3	124.6	
4	114.4	
5	125.5	
6	114.6	7.91 (d, J=7.8 Hz, 1H)
7	119.9	7.15 (m, 1H)
8	105.3	6.94 (d, J=7.8 Hz, 1H)
9	146.9	
10	130.6	
11	135.9	
12	110.1	7.29 (s, 1H)
13	127.2	
14	131.0	
15	48.2	4.02 (m, 2H)
16	36.0	2.19 (m, 2H)
17	131.1	
18	130.1	6.29 (m, 2H)
19	114.3	6.56 (m, 2H)
20	159.1	
21	55.3	3.66 (s, 3H)
22	134.8	
23	131.8	7.62 (m, 2H)
24	114.5	7.11 (m 2H)
25	160.2	
26	55.8	3.90 (s, 3H)
27	126.9	
28	131.7	7.48 (m, 2H)
29	114.7	7.06 (m, 2H)
30	160.5	
31	55.7	3.87 (s, 3H)
32	55.8	4.02 (m, 3H)
NH		10.28 (s, 1H)

2-Bromo-7-isopropoxy-5-methoxy-1,4-bis-(4-methoxyphenyl)-3-[2-(4-methoxyphenyl)-ethyl]-3,6-dihydropyrrolo[2,3-c]carbazole (27). NBS ($230 \mathrm{mg}, 1.29 \mathrm{mmol}$) was added in one portion to a stirred solution of the pyrrolocarbazole $\mathbf{1 8}(830 \mathrm{mg}, 1.29 \mathrm{mmol})$ in THF (26 mL) at $0^{\circ} \mathrm{C}$. After stirring for 30 min , the cooling bath was removed and the solution was allowed to reach ambient temperature over 10 min . The mixture was concentrated under reduced pressure to ca. $1 / 5$ of the original volume and passed through a silica pad, which was rinsed with EtOAc/hexanes (1:2). The combined filtrates were evaporated and the solid thus obtained was recrystallized from hot EtOAc/hexanes to give the title compound 27 as an offwhite solid ($639 \mathrm{mg}, 69 \%$). $\mathrm{mp}=201-202{ }^{\circ} \mathrm{C}$ (decomp.); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=$ $8.54(\mathrm{~s}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, 7.08 (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.77(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{br} \mathrm{s}, 4 \mathrm{H}), 6.67(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $5.85(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.74$ (hept, $J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{~m}, 2 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 3.93$ ($\mathrm{s}, 3$ H), $3.75(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 2.58(\mathrm{~m}, 2 \mathrm{H}), 1.43(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 6 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta=160.0,159.9,158.8,144.0,141.0,133.3,132.7,131.1,130.6,130.1,129.8$, $129.6,127.8,124.9,120.2,119.2,118.3,118.1,116.7,114.9,114.4,114.2,114.1,114.0$, 107.4, 71.2, 61.6, 55.8, 55.8, 55.6, 48.7, 36.0, 22.5; IR (film): $\tilde{v}=3353,2932,2831,1613$, 1573, 1547, 1511, 1498, 1455, 1440, 1408, 1356, 1338, 1317, 1302, 1285, 1244, 1170, 1141, 1123, 1104, 1027, 1007, 933, 916, 862, 840, 820, 786, 753, 740, 686, $659 \mathrm{~cm}^{-1}$; MS (EI): m / z (\%): 722 (10), 721 (42), 720 ($100\left[\mathrm{M}^{+}\right]$), 719 (43), 718 (93), 556 (14), 554 (13), 541 (12), 539 (11), 518 (10), 461 (8), 135 (56); HRMS (ESI $)$ calcd. for $\mathrm{C}_{41} \mathrm{H}_{39} \mathrm{Br}_{1} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 741.1940; found: 741.1937.

The compound should be stored in a refrigerator to avoid migration of the bromine along the periphery of the heteroarene system, which ultimately furnishes the isomeric bromide $\mathbf{2 8}$ with the following spectroscopic properties: ${ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, $\mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=8.55(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N} H), 7.51(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{H}(18,22)), 7.37$ (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}(32,36)), 7.08(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{H}(19-21)), 7.04$ (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}(33,35)$), $6.89-$ 6.92 (br s, $1 \mathrm{H}, \mathrm{H}(2)$), 6.87 (d, $J=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}(9)), 6.70(\mathrm{~d}, J$ $=8.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}(40,42)), 6.65(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}(39,43))$, $6.01(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}(7)), 4.72$ (hept, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 3.95\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(34)-\mathrm{OCH}_{3}\right), 3.93$ (s, $3 \mathrm{H}, \mathrm{C}(20)-$ OCH_{3}), $3.84(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}(23)), 3.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(28)-\mathrm{OCH}_{3}\right), 3.64\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(14)-\mathrm{OCH}_{3}\right), 2.63(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{H}(24)), 1.45\left(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 6 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=159.9$ (C20), 159.8 (C34), 158.7 (C28), 144.3 (C10), 140.7 (C14), 132.6 (C18, C22), 132.6 (C32, C36), 130.8 (C25), 130.1 (C 31), 130.0 (C26, C30), 129.5 (C11), 129.2 (C16), 128.9 (C2), 127.8 (C17), 125.7 (C6), 120.1 (C4), 119.7 (C7), 119.1 (C15), 117.1 (C3), 114.0 (C19, C21), 113.9 (C26, C30), $113.8(\mathrm{C} 33, \mathrm{C} 35), 111.3(\mathrm{C} 8), 110.1(\mathrm{C} 9), 71.6\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 61.7(\mathrm{C} 14-$ $\left.\mathrm{OCH}_{3}\right), 55.9\left(\mathrm{C} 34-\mathrm{OCH}_{3}\right), 55.8\left(\mathrm{C} 20-\mathrm{OCH}_{3}\right), 55.2\left(\mathrm{C} 28-\mathrm{OCH}_{3}\right), 50.5(\mathrm{C} 23), 37.3(\mathrm{C} 4), 22.3$
$\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right)$; IR (film): $\tilde{v}=3358,2932,2832,1611,1563,1547,1512,1460,1436,1404$, 1370, 1338, 1302, 1275, 1238, 1173, 1137, 1106, 1028, 1008, 932, 879, 836, 821, 789, 730, $713,691,667 \mathrm{~cm}^{-1}$; MS (EI): $\mathrm{m} / \mathrm{z}(\%): 722$ (16), 721 (55), 720 (100 [M+]), 719 (54), 718 (85), 556 (16), 555 (10), 554 (15), 541 (13), 539 (11), 135 (47); HRMS (ESI ${ }^{+}$calcd. for $\mathrm{C}_{41} \mathrm{H}_{39} \mathrm{BrN}_{2} \mathrm{O}_{5}+\mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 741.1935; found: 741.1936.
\{7-Isopropoxy-5-methoxy-1,4-bis-(4-methoxyphenyl)-3-[2-(4-methoxyphenyl)ethyl]-3,6-dihydropyrrolo[2,3-c]carbazol-2-yl\}-(4-methoxyphenyl)methanol (29). MeLi (1.6 M in $\mathrm{Et}_{2} \mathrm{O}, 0.59 \mathrm{~mL}, 0.946 \mathrm{mmol}$) was added dropwise to a stirred solution of the bromopyrrolocarbazole 27 ($619 \mathrm{mg}, 0.860 \mathrm{mmol}$) in dry THF (33 mL) at $-78^{\circ} \mathrm{C}$ under argon. After stirring for $15 \mathrm{~min}, n-\mathrm{BuLi}(1.6 \mathrm{M}$ in hexanes, $0.59 \mathrm{~mL}, 0.946 \mathrm{mmol})$ was added dropwise and stirring was continued for another 15 min before a solution of p-methoxybenzaldehyde (0.26 $\mathrm{mL}, 2.15 \mathrm{mmol}$) in dry THF (1 mL) was slowly introduced. After 15 min , the cooling bath was removed and the mixture was allowed to reach ambient temperature over 30 min . For work up, the reaction was carefully quenched with aq. $\mathrm{NH}_{4} \mathrm{Cl}(1 \mathrm{~mL})$ and brine $(1 \mathrm{~mL})$, the organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated, and the residue was purified by flash chromatography (EtOAc/hexanes, 1:4) to furnish compound 29 as a white foam (647 mg , $97 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=8.58(\mathrm{~s}, 1 \mathrm{H}), 7.54-7.45(\mathrm{~m}, 4 \mathrm{H}), 7.29(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 2 \mathrm{H}), 7.07-7.02(\mathrm{~m}, 3 \mathrm{H}), 6.98(\mathrm{dd}, J=8.4,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.78$ (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$), $6.69(\mathrm{dd}, J=8.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.31(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 2 \mathrm{H}), 6.03(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.76$ (hept, J = $6.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.92 (s, 3 H), 3.87 ($\mathrm{s}, 3 \mathrm{H}$), 3.82 (m, 2 H), 3.77 ($\mathrm{s}, 3 \mathrm{H}$), 3.74 ($\mathrm{s}, 3 \mathrm{H}$), 3.57 ($\mathrm{s}, 3 \mathrm{H}$), 2.54 (m, 1 H), $2.46(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.09(\mathrm{~m}, 1 \mathrm{H}), 1.45(\mathrm{dd}, J=6.1,1.4 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta=159.9,159.8,159.1,158.4,144.0,141.4,137.8,134.8,133.6,133.5,133.1$, 133.0, 131.1, 130.2, 129.9, 129.5, 129.5, 127.9, 127.1, 125.1, 120.3, 119.2, 118.4, 118.4, $116.8,115.7,114.3,114.1,114.1,113.9,113.8,113.6,114.3,114.1,114.1,113.9,113.8$, $113.6,107.3,71.2,68.0,61.3,55.9,55.8,55.6,55.5,47.6,36.0,22.5$; IR (film): $\tilde{v}=3451$, 2969, 2934, 2835, 1729, 1610, 1573, 1547, 1510, 1463, 1440, 1402, 1371, 1318, 1301, 1284, $1240,1171,1106,1064,1030,1007,953,918,875,837,804,789,770,734,709,677 \mathrm{~cm}^{-1}$; MS (EI): m / z (\%): 778 (10), 777 (34), 776 (66 [M $\left.{ }^{+}\right]$), 655 (12), 626 (14), 612 (9), 534 (7), 506 (16), 449 (7), 135 (63), 134 (44), 121 (100), 119 (19), 91 (15), 65 (8); HRMS (ESI ${ }^{+}$calcd. for $\mathrm{C}_{49} \mathrm{H}_{48} \mathrm{~N}_{2} \mathrm{O}_{7}+\mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 799.3359$; found: 799.3352 .
\{7-Isopropoxy-5-methoxy-1,4-bis-(4-methoxyphenyl)-3-[2-(4-methoxyphenyl)ethyl]-3,6-dihydropyrrolo[2,3-c]carbazol-2-yl\}-(4-methoxyphenyl) methanone (30). TPAP (9.1 mg , $0.026 \mathrm{mmol})$ was added to a suspension of alcohol $29(202 \mathrm{mg}, 0.260 \mathrm{mmol})$, NMO $(61.0 \mathrm{mg}$, $0.520 \mathrm{mmol})$ and activated molecular sieves ($4 \AA$, 600 mg) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ under argon. The mixture was vigorously stirred for 2 h before it was filtered through a pad of Celite and the filtrate was evaporated. Purification of the residue by flash chromatography ($\mathrm{EtOAc} /$ hexanes, 1:4) afforded ketone $\mathbf{3 0}$ as a yellow foam ($129 \mathrm{mg}, 66 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=$ $8.68(\mathrm{~s}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$,
$7.10(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.80(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.77(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 2 \mathrm{H}), 6.66(\mathrm{dd}, J=8.4,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.54(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $5.81(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.76$ (hept, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{~m}, 2 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3$ H), $3.79(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 2.55(\mathrm{~m}, 2 \mathrm{H}), 1.45(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta=189.7,163.3,159.7,159.2,158.3,143.8,143.0,136.3,133.2$, 132.4, 132.3, 131.8, 131.2, 130.8, 130.5, 129.7, 129.6, 128.8, 127.4, 124.6, 121.8, 119.5, $118.9,118.2,116.9,115.7,113.9,113.6,113.3,113.3,107.0,70.9,61.3,55.5,55.5,55.5$, $55.2,47.6,36.7,22.2$; IR (film): $\tilde{v}=3344,2969,1934,1835,1596,1572,1533,1510,1462$, 1439, 1420, 1384, 1371, 1350, 1316, 1285, 1239, 1170, 1153, 1106, 1063, 1028, 1008, 971, 932, 922, 905, 869, 836, 795, 781, 773, 733, $704 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%): 775 (32), 774 (58 $\left[\mathrm{M}^{+}\right]$), 654 (15), 653 (33), 640 (14), 595 (16), 135 (100), 121 (25); HRMS (ESI ${ }^{+}$) calcd. for $\mathrm{C}_{49} \mathrm{H}_{47} \mathrm{~N}_{2} \mathrm{O}_{7}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 775.3370$; found: 775.3378 .

Dimer 31. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=8.65(\mathrm{~s}, 1 \mathrm{H}), 7.63-7.49(\mathrm{~m}, 8 \mathrm{H}), 7.34(\mathrm{~d}, J=$ $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~m}, 2 \mathrm{H}), 7.07(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.01-6.98(\mathrm{~m}$, $3 \mathrm{H}), 6.95(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{dd}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.73(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.64(\mathrm{~d}, J$ $=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.63(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.59(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H})$ superimposed upon $6.58(\mathrm{~m}, 1 \mathrm{H}), 6.54(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.52(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.18$ $(\mathrm{m}, 1 \mathrm{H}), 6.09(\mathrm{~m}, 1 \mathrm{H}), 5.94(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.59(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{hept}, \mathrm{d}=$ $6.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.27 (hept, $J=5.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.92 ($\mathrm{s}, 3 \mathrm{H}$), 3.89 (m, 4 H), 3.84 ($\mathrm{s}, 3 \mathrm{H}$), 3.84 (s, 3 H), $3.81(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 2.77(\mathrm{~s}, 3 \mathrm{H}), 2.62(\mathrm{~s}$, $3 \mathrm{H}), 2.53(\mathrm{~m}, 4 \mathrm{H}), 1.45(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.44(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.72(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3$ H), $0.71(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=190.2$, 189.7, 163.6, 163.5, 159.9, 159.7, 159.4, 159.1, 158.6, 145.0, 144.6, 143.3, 142.0, 136.8, 136.4, 134.5, 133.7, 133.4, 132.9, 132.9, 132.8, 132.7, 132.6, 132.6, 132.5, 132.1, 132.1, 132.0, 131.5, 131.4, $130.8,130.7,130.3,130.2,129.9,129.5,128.4,128.0,127.7,125.1,122.8,122.3,122.1$, $120.3,119.4,119.3,118.8,118.3,118.2,117.3,116.6,116.3,114.2,114.2,114.0,113.8$, $113.8,113.6,113.5,113.5,112.5,110.2,109.0,71.3,70.0,61.6,55.8,55.8,55.8,55.7,55.7$, $55.4,55.4,54.7,48.0,47.9,36.9,36.8,22.5,22.3,21.8,21.6$; IR (film) $\tilde{v}=2969,2932,2834$, $1733,1597,1574,1533,1511,1462,1440,1421,1371,1348,1285,1239,1172,1108,1027$, 969, 928, 905, 835, 794, 781, 769, 732, $705 \mathrm{~cm}^{-1}$; HRMS (ESI') calcd. for $\mathrm{C}_{98} \mathrm{H}_{91} \mathrm{~N}_{4} \mathrm{O}_{14}$ $\left[(\mathrm{M}+\mathrm{H})^{+}\right]: 1547.6526$; found: 1547.6499 .
\{7-Hydroxy-5-methoxy-1,4-bis-(4-methoxyphenyl)-3-[2-(4-methoxyphenyl)ethyl]-3,6-dihydropyrrolo[2,3-c]carbazol-2-yl\}-(4-methoxyphenyl)methanone (32). BCl_{3} (1 M in heptanes, $1.32 \mathrm{~mL}, 1.32 \mathrm{mmol}$) was added dropwise to a stirred solution of compound $\mathbf{3 0}$ (256 $\mathrm{mg}, 0.330 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(16 \mathrm{~mL})$ at $-20^{\circ} \mathrm{C}$. After 1 h the reaction was quenched with vigorous stirring at that temperature with sat. aq. $\mathrm{NaHCO}_{3}(3 \mathrm{~mL})$ and the mixture was allowed to warm to ambient temperature. The organic layer was washed with brine (3 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated, and the residue was purified by flash chromatography (EtOAc/hexanes, 2:3) to afford compound 32 as a yellow oil (206 mg, 85\%). ${ }^{1} \mathrm{H}$ NMR (400
$\left.\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=8.68(\mathrm{~s}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.05(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.78(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.70(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$, $6.69(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.58(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 2 \mathrm{H}), 5.81(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{~s}, 1 \mathrm{H}), 3.96(\mathrm{~m}, 2 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H})$, 3.78 (s, 3 H), 3.69 (s, 3 H), 3.65 ($\mathrm{s}, 3 \mathrm{H}$), 2.52 (m, 2 H), ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta=190.3,163.7,159.9,159.5,158.6,143.4,141.6,136.6,133.5,132.7,132.6,132.0,131.8$, $131.5,130.8,130.4,129.9,129.3,129.0,127.6,125.6,122.6,119.9,119.3,118.7,117.6$, $116.0,114.2,113.9,113.6,109.561 .5,55.8,55.8,55.8,55.5,64.4,47.9,36.9$; R (film): $\tilde{v}=$ $3359,2935,1609,1595,1577,1532,1512,1463,1438,1422,1287,1245,1174,1107,1067$, 1034, 966, $835 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%): 733 (15), 732 ($30\left[\mathrm{M}^{+}\right]$), 612 (10), 611 (25), 598 (17), 135 (100), 121 (29), 105 (7); HRMS (ESI ${ }^{+}$) calcd. for $\mathrm{C}_{46} \mathrm{H}_{41} \mathrm{~N}_{2} \mathrm{O}_{7}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 733.2913; found: 733.2908 .

Sulfuric acid 5-methoxy-2-(4-methoxybenzoyl)-1,4-bis-(4-methoxyphenyl)-3-[2-(4-methoxyphenyl)ethyl]-3,6-dihydropyrrolo[2,3-c]carbazol-7-yl ester 2,2,2-trichloroethyl

 ester (33). A solution of 2,2,2-trichloroethyl chlorosulfate ($91 \mathrm{mg}, 0.37 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(1 \mathrm{~mL})$ was added in one portion to a stirred solution of phenol $\mathbf{3 2}(180 \mathrm{mg}, 0.243 \mathrm{mmol})$ and DABCO ($83 \mathrm{mg}, 0.37 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(24 \mathrm{~mL})$ at ambient temperature. Once the reaction was complete $(2 \mathrm{~h})$, sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(4 \mathrm{~mL})$ was added, the layers were separated, and the organic layer was washed with brine (2 mL) before being dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent followed by flash chromatography of the residue (EtOAc/hexanes, 1:3) gave compound $\mathbf{3 3}$ as a yellow foam ($214 \mathrm{mg}, 92 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=8.82$ (s, 1 H), 7.58 (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.57 (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{dd}, J=8.0,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.26$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.11 (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$), $6.81(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.77(\mathrm{dd}, J=8.4,8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.61(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.52(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.19$ (d, J=8.4 Hz, 1 H), $4.85(\mathrm{~s}, 2 \mathrm{H}), 3.95(\mathrm{~m}, 2 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H})$, $3.69(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 2.53(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=189.9$, 163.8, 160.1, 159.7, 142.9, 137.0, 135.2, 133.5, 132.6, 131.9, 131.8, 131.1, 130.6, 129.9, 128.7, $127.6,127.2,124.7,121.7,120.0,119.6,119.1,116.3,115.4,114.3,113.9,113.8,113.7,81.3$, 61.7, 55.8, 55.8, 55.8, 55.5, 48.0, 37.0; IR (film): $\tilde{v}=2935,2835,1597,1572,1533,1511$, 1462, 1442, 1417, 1351, 1311, 1286, 1243, 1193, 1173, 1158, 1106, 1068, 1030, 996, 965, 926, 885, 867, 836, 812, 794, 782, 770, $724 \mathrm{~cm}^{-1}$; HRMS (ESI') calcd. for $\mathrm{C}_{48} \mathrm{H}_{42} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{~S}_{1}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right): 943.1622$; found: 943.1622.Dictyodendrin B (2). BCl_{3} (1 M in heptanes, $0.76 \mathrm{~mL}, 0.76 \mathrm{mmol}$) was added dropwise to a stirred solution of compound $33(60 \mathrm{mg}, 0.064 \mathrm{mmol})$ and $(n-\mathrm{Bu})_{4} \mathrm{NI}(282 \mathrm{mg}, 0.0764 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6.4 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ under argon. The cooling bath was removed and the solution was stirred at ambient temperature for 1.5 h . The reaction was quenched with water $(10 \mathrm{~mL})$ and the resulting mixture was vigorously stirred for 1 h before it was diluted with EtOAc (20 mL). The organic layer was successively washed with sat. aq. $\mathrm{Na}_{2} \mathrm{SO}_{3}(5 \mathrm{~mL})$ and brine (2 mL) before it was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. The residue was passed through a pad of
reverse-phase chromatography gel (LiChroprep RP-18, E. Merck, Darmstadt, 5 g), eluting with $3: 1 \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$, and product 34 thus obtained was immediately processed in the next step without further characterization.

To a solution of this crude material and $\mathrm{HCO}_{2} \mathrm{NH}_{4}(24 \mathrm{mg}, 0.38 \mathrm{mmol})$ in dry $\mathrm{MeOH}(6.4$ mL) was added activated zinc dust ($8.3 \mathrm{mg}, 0.13 \mathrm{mmol}$). The suspension was vigorously stirred for 1 h before excess zinc was filtered off through a pad of Celite. The filtrate was evaporated and the residue purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 9: 1 \rightarrow 4: 1\right)$. The pooled fractions were concentrated, and the residue was dissolved in water (1 mL). 4 Drops of ammonia (7 m in MeOH) were added, and the product was lyophilized to afford dicytodendrin B 2 ($28 \mathrm{mg}, 58 \%$ over both steps) as a yellow foam. ${ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right): \delta=8.48(\mathrm{~s}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J=$ $7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}) ; 7.05(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.65(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2$ H), $6.57(\mathrm{dd}, J=7.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.47(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.41$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.02(\mathrm{dd}, J=8.4,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.47(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta=192.0$, 163.1, 158.7, 157.7, 156.8, 141.7, 138.8, $136.2,134.3,134.3,134.0,133.8,132.0,130.6,129.3,129.2,127.1,126.8,125.8,122.7$, $118.9,118.2,117.2,116.8,116.1,116.0,115.6,112.6,48.4,37.7$; IR (film): $\tilde{v}=3250,1673$, 1593, 1535, 1513, 1441, 1369, 1325, 1204, 1157, 1104, 1053, 1004, 921, 838, 798, 764, 724, $679 \mathrm{~cm}^{-1}$. MS (ESI-) m/z: 741 ($\left[\mathrm{M}-\mathrm{NH}_{4}\right]^{-}$); HRMS (ESI') calcd. for $\mathrm{C}_{41} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{~S}$ ([M-NH4] $]^{-}$): 741.1549; found: 741.1549.

Total Synthesis of Dictyodendrin E

Compound 41. A solution of 4-methoxybenzylmagnesium chloride (0.5 M in THF, 0.750 $\mathrm{mmol}, 1.5 \mathrm{~mL}$) was added dropwise to a solution of $9-\mathrm{MeO}-9-\mathrm{BBN}(0.5 \mathrm{M}$ in hexanes, 0.750 mmol, 1.5 mL) at $-78{ }^{\circ} \mathrm{C}$ under argon. The cold bath was removed and the mixture was stirred at ambient temperature for 30 min . The resulting solution of borate $\mathbf{4 0}$ was diluted with DMF (5 mL) and freeze-thaw-degassed twice before bromide $27(0.185 \mathrm{mmol}, 133 \mathrm{mg})$ was added, followed by $\mathrm{Pd}(\mathrm{OAc})_{2}(0.0185 \mathrm{mmol}, 4.2 \mathrm{mg})$ and S-PHOS $(0.0370 \mathrm{mmol}, 15.2 \mathrm{mg})$. The resulting mixture was stirred at $110^{\circ} \mathrm{C}$ (bath temperature) for 4.5 h until TLC indicated complete conversion of the substrate. The precipitated palladium black was filtered off through a pad of Celite, the filtrate was diluted with water (70 mL), and the product was extracted with EtOAc ($3 \times 10 \mathrm{~mL}$). The combined organic layers were washed with brine (5 $\mathrm{mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated, and the residue was purified by flash chromatography (EtOAc/hexanes 1:6) to afford compound $41(126 \mathrm{mg}, 90 \%)$ as a white solid. $\mathrm{mp}=225-226$ ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=8.51(\mathrm{~s}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 7.05(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.77$ (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$), 6.77 (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}$), 6.66 (dd, $J=8.8,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J=8.8$
$\mathrm{Hz}, 2 \mathrm{H}), 6.38(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.83(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.75$ (hept, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H})$, 3.91 (s, 3 H), 3.90 (s, 3 H), 3.81 (br s, 2 H), 3.73 (s, 3 H), 3.69 (s, 3 H) overlapping with 3.69 $(\mathrm{m}, 2 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~m}, 2 \mathrm{H}), 1.43(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=159.4,159.2,143.6,140.2,136.6,133.1,132.6,131.7,130.7,130.6,129.6$, $129.0,128.4,127.9,124.9,120.0,118.7,117.9,116.5,116.5,114.9,114.0,113.7,113.6$, $113.5,106.9,70.8,61.2,55.5,55.4,55.3,55.2,46.6,36.2,30.3,22.2$; IR (film) $\tilde{v}=3317$, 2932, 2834, 1738, 1608, 1572, 1543, 1508, 1463, 1439, 1406, 1362, 1322, 1300, 1281, 1238, 1170, 1123, 1104, 1064, 1031, 1007, 970, 954, 836, 806, 792, 771, 754, $717 \mathrm{~cm}^{-1}$; MS (EI): m / z (\%): 762 (16), 761 (53), 760 (100 [M $\left.{ }^{+}\right]$), 745 (14), 639 (18), 596 (12), 581 (10), 543 (21), 135 (30), 121 (31); HRMS (ESI^{+}) calcd. for $\mathrm{C}_{49} \mathrm{H}_{48} \mathrm{~N}_{2} \mathrm{O}_{6}+\mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 783.3405$; found: 783.3400 .

Compound 42. $\mathrm{BBr}_{3}\left(1 \mathrm{~m}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.900 \mathrm{~mL}, 0.900 \mathrm{mmol}$) was added dropwise to a solution of compound $41(68.5 \mathrm{mg}, 0.0900 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(9 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ under argon. The cold bath was removed and the mixture was allowed to reach ambient temperature. Upon completion of the reaction (30 min), the mixture was cooled to $0{ }^{\circ} \mathrm{C}$, the reaction was quenched with 10% aq. $\mathrm{KHSO}_{4}(6 \mathrm{~mL})$ and vigorously stirred at ambient temperature for 30 min . The product was extracted with tert-butyl methyl ether ($3 \times 5 \mathrm{~mL}$), the combined organic layers were washed with brine (2 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated to afford polyphenol 42 as an unstable blue foam which was not further purified. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{THF}-\mathrm{d}_{8}$): $\delta=$ 7.37 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), $7.26(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 2 \mathrm{H}), 6.79(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.55(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.50(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.47$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.42(\mathrm{dd}, J=7.9,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.34(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.94(\mathrm{~d}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 2 \mathrm{H}), 3.66(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.33(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 $\left.\mathrm{MHz}, \mathrm{THF}-\mathrm{d}_{8}\right): \delta=158.6,157.7,156.9,156.8,143.3,137.8,134.9,133.9,133.8,131.7$, $130.9,130.4,130.3,130.3,129.6,129.6,127.6,127.3,126.3,118.6,118.3,117.7,117.0$, $116.3,115.9,115.9,115.5,115.5,111.2,108.6,47.3,37.2,31.0$; IR (film) $\tilde{v}=3217,2974$, 1608, 1579, 1556, 1512, 1443, 1406, 1367, 1219, 1167, 1098, 1063, 1009, 832, 785, 721 cm^{-1}; HRMS (ESI $\left.{ }^{+}\right)$calcd. for $\mathrm{C}_{41} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{6}+\mathrm{K}\left([\mathrm{M}+\mathrm{K}]^{+}\right)$: 687.1892; found: 687.1891.

Desulfated Dictyodendrin E (43). Freshly recrystallized DDQ ($20.4 \mathrm{mg}, 0.090 \mathrm{mmol}$) was added to a solution of phenol $42(58.4 \mathrm{mg}, 0.090 \mathrm{mmol})$ in THF (1.8 mL) and the resulting mixture was stirred for 30 min . For work up, the solvent was evaporated and the residue was purified by flash chromatography (EtOAc/hexanes, $3: 2 \rightarrow 4: 1$) to afford compound 43 (48.2 $\mathrm{mg}, 83 \%$ over 2 steps) as a red solid. $\mathrm{mp}=253-255{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{THF}-\mathrm{d}_{8}$): $\delta=$ 11.17 (s, 1 H), 8.61 ($\mathrm{s}, 1 \mathrm{H}$), 8.59 ($\mathrm{s}, 1 \mathrm{H}$), 8.45 ($\mathrm{s}, 1 \mathrm{H}$), 7.84 (s, 1 H), 7.47 (d, $J=8.4 \mathrm{~Hz}, 2$ H), 7.22 (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.21 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.91(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.74(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.47$ (d, $J=4.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.42$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 6.36 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 5.97 (s, 1 H$), 5.54$ (dd, $J=4.8,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.46$ (t, $J=7.3 \mathrm{~Hz}, 2$ H), $2.29(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (100 MHz, THF- d_{8}): $\delta=176.5,159.4,158.9$, 157.8, $157.5,157.0,149.0,145.1,142.5,135.0,133.2,133.2,133.1,130.5,129.7,129.6,129.0$,
127.8, 126.7, 126.5, 126.2, 121.4, 118.3, 116.4, 116.0, 115.8, 115.6, 115.5, 114.2, 113.1, 109.1, 49.7, 33.6; IR (film) $\tilde{v}=3218,2956,2921,2223,1697,1605,1560,1508,1442,1394$, 1370, 1342, 1259, 1211, 1166, 1137, 1077, 1034, 894, 804, $733 \mathrm{~cm}^{-1}$; HRMS (ESI ${ }^{+}$) calcd. for $\mathrm{C}_{41} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{6}+\mathrm{K}\left([\mathrm{M}+\mathrm{K}]^{+}\right):$685.1736; found: 685.1732 .

Compound 45. A solution of BCl_{3} (1 m in heptanes, $0.580 \mathrm{mmol}, 0.580 \mathrm{~mL}$) was added dropwise to a solution of isopropyl ether $\mathbf{4 1}(0.145 \mathrm{mmol}, 110 \mathrm{mg})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7.3 \mathrm{~mL})$ at -20 ${ }^{\circ} \mathrm{C}$ under argon. The mixture was allowed to warm to $0^{\circ} \mathrm{C}$ over 1 h before 10% aq. KHSO_{4} (3 mL) was added. The resulting mixture was vigorously stirred at ambient temperature for 15 min, the aqueous layer was extracted with $\mathrm{EtOAc}(3 \times 10 \mathrm{~mL}$), and the combined organic phases were washed with brine (1 mL), dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. The residue was purified by a quick filtration through a short silica pad (eluent: EtOAc) to give the rather unstable phenol $\mathbf{4 4}$ which was used directly in the next step.

2,2,2-Trichloroethyl chlorosulfate ($0.290 \mathrm{mmol}, 71.3 \mathrm{mg}$) was added to a solution of phenol 44 and DABCO ($1.45 \mathrm{mmol}, 170 \mathrm{mg}$) in THF (1.5 mL) and the mixture was stirred for 1 h . For work up, water (5 mL) was added, the aqueous layer was extracted with $\mathrm{EtOAc}(3 \times 3$ mL), and the combined organic phases were washed with brine (1 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated. The residue was purified by flash chromatography (EtOAc/hexanes $1: 4$) to afford compound 45 ($109 \mathrm{mg}, 83 \%$ over two steps) as a yellow oil which rapidly turns red upon exposure to air. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=8.75(\mathrm{~s}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$, 7.43 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{dd}, J=8.0,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.05(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.00(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.80(\mathrm{dd}, J=8.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2$ H), $6.66(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.39(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.24(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{~s}, 2 \mathrm{H})$, $3.92(\mathrm{~s}, 3 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H})$ superimposed upon 3.74-3.72(m, 2 H), $3.72(\mathrm{~s}, 3 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=$ $159.6,159.4,158.3,139.9,137.3,134.7,133.1,132.5,131.4,130.8,130.4,130.2,129.9$, 129.7, 129.6, 128.9, 127.7, 127.3, 123.8, 119.9, 119.4, 118.6, 116.5, 115.7, 114.2, 114.0, $113.8,113.7,113.5,95.7,92.5,80.9,61.3,55.5,55.5,55.3,55.2,46.7,36.2,30.3$; IR (film) $\tilde{v}=3411,2932,2834,1609,1571,1509,1462,1441,1401,1364,1302,1284,1241,1193$, 1172, 1159, 1104, 1030, 1007, 993, 959, 886, 830, 809, 793, 775, $723 \mathrm{~cm}^{-1}$; HRMS (ESI $)$ calcd. for $\mathrm{C}_{48} \mathrm{H}_{43} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{SCl}_{3}+\mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 951.1647; found: 951.1652.

Compound 46. $\mathrm{BCl}_{3}(1 \mathrm{~m}$ in heptanes, $1.20 \mathrm{mmol}, 1.20 \mathrm{~mL}$) was added dropwise to a stirred solution of compound $45(0.120 \mathrm{mmol}, 109 \mathrm{mg})$ and $n-\mathrm{Bu}_{4} \mathrm{NI}(1.20 \mathrm{mmol}, 443 \mathrm{mg})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(12 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. After the mixture had been stirred for $30 \mathrm{~min}, 10 \%$ aq. $\mathrm{KHSO}_{4}(5 \mathrm{~mL})$ was added to quench the reaction, and the resulting solution was vigorously stirred at ambient temperature for 30 min . The aqueous layer was extracted with $\operatorname{EtOAc}(3 \times 15 \mathrm{~mL})$, and the combined organic phases were washed with brine (2 mL), dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. The residue was adsorbed on Celite and purified by reverse-phase chromatography (Merck LiChroprep RP-18). The tetrabutylammonium salts were eluted first $\left(\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}, 1: 1\right)$,
followed by the desired product 46 (eluent: MeOH), which was obtained as a red solid (88.2 $\mathrm{mg}, 85 \%) . \mathrm{mp}=139-140{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=7.40(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, 7.31 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.99$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.92$ (d, $J=8.2$ $\mathrm{Hz}, 2 \mathrm{H}), 6.90(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.69(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.53(\mathrm{~d}$, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.33(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.30(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~s}, 2 \mathrm{H}), 3.75(\mathrm{br} \mathrm{s}$, $2 \mathrm{H}), 3.68$ (m, 2 H), 2.30 (m, 2 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=159.1,158.4,157.2$, 157.1, 138.1, 137.0, 136.7, 134.8, 134.6, 132.7, 132.5, 131.5, 131.2, 131.1, 130.8, 130.6, $129.1,129.1,127.9,125.3,118.9,118.9,118.1,117.0,116.8,116.5,116.3,115.6,114.4,94.6$, 82.5, 48.1, 37.8, 31.2; IR (film) $\tilde{v}=3318,2926,1698,1610,1557,1511,1443,1040,1373$, 1322, 1192, 1157, 1096, 1044, 992, 894, 829, 785, $723 \mathrm{~cm}^{-1}$; HRMS (ESI ${ }^{+}$) calcd. for $\mathrm{C}_{43} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{Cl}_{3} \mathrm{~S}+\mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 881.0865$; found: 881.0861 .

Dictyodendrin E (5). A suspension of sulfate $\mathbf{4 6}(64.5 \mathrm{mg}, 0.075 \mathrm{mmol})$, ammonium formate ($28.4 \mathrm{mg}, 0.45 \mathrm{mmol}$) and zinc powder ($9.8 \mathrm{mg}, 0.15 \mathrm{mmol}$) in $\mathrm{MeOH}(7.5 \mathrm{~mL}$) was vigorously stirred for 1 h . The suspension was then filtered through a pad of Celite and the filtrate was evaporated.

To a solution of the residue in THF (7.5 mL) was added freshly recrystallized DDQ (17.0 mg , $0.075 \mathrm{mmol})$ and the resulting mixture was stirred at ambient temperature for 15 min before being evaporated. The crude product was adsorbed on silica and purified by flash chromatography: the side-products were eluted first with EtOAc before compound 5 was eluted with $\mathrm{EtOAc} / \mathrm{MeOH}(4: 1)$. The fractions containing the product were evaporated, the residue was taken up in MeOH , excess aq. $\mathrm{NH}_{4} \mathrm{OH}$ was added, and all volatile materials were then evaporated to give dictyodendrin E 5 in form of its ammonium salt ($42.1 \mathrm{mg}, 75 \%$ over steps). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=8.48(\mathrm{~s}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.94(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H})$, 6.78 (d, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.62(\mathrm{dd}, J=8.0,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.39(\mathrm{br} \mathrm{s}, 4 \mathrm{H}), 5.99(\mathrm{~s}, 1 \mathrm{H}), 5.75$ (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}$), $3.47(\mathrm{~m}, 2 \mathrm{H}), 2.28(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=170.0$, 159.7, 159.5, 158.0, 157.9, 156.8, 148.9, 143.9, 140.0, 135.5, 134.3, 133.8, 133.5, 133.3, $132.8,130.9,130.1,127.8,127.2,127.0,126.3,121.6,121.3,120.8,117.6,116.7,116.6$, $116.4,116.3,115.7,114.4,49.7,34.2$; IR (film) $\tilde{v}=3184,2209,1563,1509,1441,1387$, 1370, 1339, 1219, 1166, 1139, 1110, 1078, 1053, 1021, 883, 809, 791, 778, $738 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd. for $\mathrm{C}_{41} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{~S}$ ([M-NH4] $]^{-}$): 725.1599; found: 725.1598 .

Table S-3. Tabular survey of the ${ }^{13} \mathrm{C}$ NMR data ($150 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OH}$) recorded for Dictyodendrin E (5); Unless indicated otherwise, the assignments are unambiguous; arbitrary numbering scheme as indicated in the insert.

Position	Natural Product	Synthetic Product
$\mathbf{2}$	$158.9^{\text {a }}$	158.0
$\mathbf{3}$	143.8	143.9
$\mathbf{4}$	n.d.	$134.3^{\text {b }}$
$\mathbf{5}$	116.0	116.3
$\mathbf{6}$	126.8	127.0
$\mathbf{7}$	121.5	121.6
$\mathbf{8}$	121.2	121.3
$\mathbf{9}$	117.6	117.6
$\mathbf{1 0}$	140.0	140.0
$\mathbf{1 1}$	133.0	132.8
$\mathbf{1 3}$	135.6	135.5
$\mathbf{1 4}$	$n . d$.	$170.0^{\text {b }}$
$\mathbf{1 5}$	114.3	114.4
$\mathbf{1 6}$	148.8	148.9
$\mathbf{1 7}$	126.9	127.2
$\mathbf{1 8} \mathbf{(2 2)}$	133.3	133.5
$\mathbf{1 9} \mathbf{(2 1)}$	116.6	116.7
$\mathbf{2 0}$	157.8	157.9
$\mathbf{2 3}$	49.6	49.7
$\mathbf{2 4}$	34.2	34.2
$\mathbf{2 5}$	130.0	130.1
$\mathbf{2 6} \mathbf{(3 0)}$	130.9	130.9
$\mathbf{2 7} \mathbf{(2 9)}$	115.8	115.7
$\mathbf{2 8}$	156.9	156.8
$\mathbf{3 1}$	126.1	126.3
$\mathbf{3 2} \mathbf{(3 6)}$	133.2	133.3
$\mathbf{3 3} \mathbf{(3 5)}$	116.4	116.4
$\mathbf{3 4}$	159.6	159.5

$\mathbf{3 7}$	120.7	120.8
$\mathbf{3 8}$	127.8	127.8
$\mathbf{3 9} \mathbf{(4 3)}$	133.8	133.8
$\mathbf{4 0} \mathbf{(4 2)}$	116.9	116.6
$\mathbf{4 1}$	159.8^{a}	159.7

${ }^{\mathrm{a}}$ interchangeable. ${ }^{\mathrm{b}}$ tentative assignment. n.d.: Not detected.

[^0]: ${ }^{1}$ Kotsuki, H.; Saito, I.; Matsuura, T. Tetrahedron Lett. 1981, 22, 469-472.

[^1]: ${ }^{2}$ Hori, M.; Ozeki, H.; Iwamura, T.; Shimizu, H.; Kataoka, T.; Iwata, N. Heterocycles 1990, 31, 23-26.
 ${ }^{3}$ Liu, Y.; Lien, I. F.; Ruttgaizer, S.; Dove, P.; Taylor, S. D. Org. Lett. 2004, 6, 209-212.

[^2]: ${ }^{4}$ Butenandt, A.; Hallmann, G.; Beckmann, R. Chem. Ber. 1957, 90, 1120-1124.

[^3]: ${ }^{5}$ (a) Fürstner, A.; Hupperts, A.; Ptock, A.; Janssen, E. J. Org. Chem. 1994, 59, 5215. (b) A detailed procedure for the large scale preparation and handling of KC_{8} is described in: Fürstner, A., in Active Metals. Preparation. Characterization. Applications (Fürstner, A., Ed.), VCH, Weinheim, 1995, p. 381

